Detailed Info
Nonlinear consensus+innovations under correlated heavy-tailed noises: Mean square convergence rate and asymptotics
Authors: | Manojlo Vukovic, Dusan Jakovetic, Dragana Bajovic, Soummya Kar |
Title: | Nonlinear consensus+innovations under correlated heavy-tailed noises: Mean square convergence rate and asymptotics |
Abstract: | We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-tailed sensing and communication noises. We allow that the sensing and communication noises are mutually correlated while independent identically distributed (i.i.d.) in time, and that they may both have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed, infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet of things (IoT) deployments. We develop a consensus+innovations distributed estimator that employs a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the estimator’s almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence. Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate. We then quantify through analytical examples the effects of the nonlinearity choices and the noises correlation on the system performance. Finally, numerical examples corroborate our findings and verify that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting, while existing methods fail under the same noise conditions. |
Publication type: | Journal |
Title of the journal: | Accepted in SIAM Journal on Control and Optimization. To Appear |
Year of Publication | TBD |
Pages: | TBD |
Number, date or frequency of the Journal: | TBD |
Publisher: | SIAM |
URL: | https://zenodo.org/records/10629239 |
DOI | 10.5281/zenodo.10629238 |
Menu
- Home
- About
- Experimentation
- Knowledge Hub
- ContactResults
- News & Events
- Contact
Funding
This project has received funding from the European Union’s Horizon 2020 Research and Innovation program under grant agreement No 957337. The website reflects only the view of the author(s) and the Commission is not responsible for any use that may be made of the information it contains.